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Statistical properties of a class of nonlinear systems driven
by colored multiplicative Gaussian noise
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We derive the time-dependent univariate and bivariate probability distribution function for an overdamped
system with a quadratic potential driven by colored Gaussian noise, whose amplitude depends on the system
statex asuxua. Particular attention is paid to the effect of the correlation function of the noise on the statistical
properties of the system. We obtain exact expressions for the fractional moments as well as the correlation
function of the system and calculate the fractal dimension. We also consider the special case of a constant
potential and determine the criteria for anomalous diffusion and stochastic localization of free particles.
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I. INTRODUCTION

Models with state-dependent~multiplicative! noise find
numerous applications in many different fields of science,
example, in quantum optics@1#, biology @2–4#, noise-
induced transitions@5,6#, growth phenomena@7#, reaction-
diffusion models of chemical systems and epidemics@8–11#,
and economic activities@12#. They are also currently studie
as simple models that generate power-law probability dis
bution functions~PDFs! @13#. A number of natural, social
and economic phenomena are claimed to be describe
power-law distributions, and such distributions are cons
ered the signature of complex self-organizing syste
@14,15#.

Systems with state-dependent noise are usually mod
by a discrete- or continuous-time version of the multiplic
tive Langevin equation, i.e., a Langevin equation in wh
the noisef (t) is multiplied by a function of the system sta
x(t). Since the Langevin equation relates the state of
systemx(t) to the noisef (t), one expects that the statistic
characteristics ofx(t) can be expressed in terms of the giv
statistical characteristics off (t). An explicit solution, how-
ever, cannot always be found, even for the linear multipli
tive Langevin equation, a generic model for generat
power-law PDFs@13#. For the continuous-time version of th
nonlinear multiplicative Langevin equation, no gene
method exists to determine the PDFs of the system in te
of the noise for arbitraryf (t). The problem simplifies sig-
nificantly, if f (t) is Gaussian white noise. Thenx(t) is a
Markovian diffusion process@16#, and its univariate PDF and
transition probability density satisfy the Fokker-Planck eq
tion, which can be solved exactly in specific cases@5,17,18#.

However, various physical effects are induced only
colored noise, which has a nonzero correlation time, and
these cases the white noise approximation represent
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oversimplification. Ratchet systems are one example; he
nonzero current of Brownian particles results from the p
turbation of an asymmetric periodic potential by extern
correlated random or periodic forces@19#. Linear systems
with additive colored noise are another example. In contr
to white noise, colored noise can give rise to anomalo
diffusion of free particles without dissipation@20#, with non-
local dissipation@21#, with time-dependent friction@22#, and
can lead to anomalous diffusion and stochastic localiza
of damped classical@23# and quantum@24# particles. System-
atic studies of the statistical properties of nonlinear syste
driven by colored noise have barely begun to be undertak

In this paper, we study in detail nonlinear systems who
statex(t) evolves according to the multiplicative Langev
equation

ẋ~ t !1kx~ t !5ux~ t !ua f ~ t ! @x~0!5x0.0#, ~1.1!

wherek>0, a is a real-valued parameter, andf (t) is a noise
with zero mean and known statistical characteristics. Eq
tion ~1.1! describes a wide class of random processes. S
cifically, if f (t) is Gaussian white noise, thenx(t) is the
Wiener process ifk50 anda50, the Ornstein-Uhlenbeck
process ifk.0 anda50 @25#, and the lognormal process
k50 and a51 @26#. Further, multiplicative noise witha
51/2 occurs in models of lasers@1#, and in models of chemi-
cal reactions and epidemics@8–11#. The latter belong to the
universality class that can be represented by the Lang
equation of Reggeon field theory. The spatially homogene
version of that equation coincides with Eq.~1.1! for smallx.

An interesting feature of Eq.~1.1! is the fact that for 0
,a,1 the solution is not unique atx50; there are two
solutions that pass through zero. Physical considerations
termine the appropriate choice for each model or applicat
If the point x50 should be considered to be an absorb
point, as for example in the chemical and epidemic mod
mentioned above, then the solution of Eq.~1.1! coincides
with the solution of the equation

@ ẋ~ t !1kx~ t !#ux~ t !u2a5 f ~ t ! @x~0!5x0#, ~1.2!
©2002 The American Physical Society05-1
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for 0<t,t f p „t f p is the random first-passage time fro
x(0)5x0 to x(t f p)50… and x(t)[0 for t>t f p . This case
will be considered elsewhere@27#. In this paper, we study the
case wherex(t) represents the~generalized! coordinate of an
overdamped particle moving in a parabolic potential. T
point x50 should then be considered to be a regular po
and the solution of Eq.~1.1! coincides with the solution o
Eq. ~1.2! for all times t>0.

Our central result is an analytical expression for the sin
time and two-time probability density function of the rando
processx(t) governed by the Langevin equation~1.2!. The
temporal evolution ofx(t) is determined by the competin
effects of the systematic restoring force2kx(t) and the ran-
dom driving forceux(t)ua f (t). The effects of this competi
tion are studied by calculating the fractional moments of
single-time or univariate PDFPx(x,t) and exploring their
short- and long-time behavior. For the casek50, these mo-
ments are useful to characterize the diffusive behavior of
particles. We find that, depending on the noise intensity
the exponenta, colored multiplicative Gaussian noise ca
lead to stochastic localization, normal diffusion, subdiff
sion, and superdiffusion. An analysis of the temporal evo
tion of Px(x,t) provides further insight into the competitio
between the systematic and random force. We find that
opposing effects of these two forces lead to temporal bim
dality. As far as numerical characteristics of the two-time
bivariate PDF are concerned, we derive expressions for
coefficient of correlation and show that correlations betwe
x(t) andx(t1) persist asut2t1u→` only for free particles in
the case of stochastic localization. To characterize the irre
larities of the sample paths of the random process, we ca
late their fractal dimension. Only colored Gaussian no
whose correlation function diverges as a power law at z
leads to fractal sample paths.

The paper is structured as follows. In Sec. II, we solve
~1.2! for the general case of arbitrary noisef (t) and exclude
values of the parametera for which the system reaches in
finity with nonzero probability on any finite time interval. I
Sec. III, we derive the uni- and bivariate PDFs ofx(t) for
stationary Gaussian noisef (t). In Sec. IV, we obtain exac
expressions for the fractional moments ofx(t) and their
short- and long-time asymptotics. In the same section
determine the criteria for anomalous diffusion and stocha
localization of free particles. In Sec. V, we study the tim
evolution of the univariate PDF analytically and numerical
In Sec. VI, we calculate the correlation function and the
efficient of correlation, and in Sec. VII we obtain the frac
dimension ofx(t). We summarize our results in Sec. VIII.

II. SOLUTION OF THE LANGEVIN EQUATION

Our aim is to express the statistical properties ofx(t) in
terms of the given statistical characteristics of the rand
driving force f (t). To this end, we need to obtain an explic
solution of the Langevin equation~1.2!. We introduce the
new variabley(t)5x(t)exp(kt) and reduce the equation to

ẏ~ t !uy~ t !u2a5evt f ~ t !, ~2.1!
03110
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wherev5(12a)k. Taking into account thaty(0)5x0, we
obtain

E
x0

y(t) dy8

uy8ua
5E

0

t

dt8evt8 f ~ t8!. ~2.2!

If a5” 1, then Eq.~2.2! yields

y~ t !uy~ t !u2a5x0
12a1~12a!E

0

t

dt8evt8 f ~ t8!, ~2.3!

and the solution of Eq.~1.2! is given by

x~ t !5@x0
12ae2vt1q~ t !#ux0

12ae2vt1q~ t !ua/~12a!,
~2.4!

where

q~ t !5~12a!E
0

t

dt8e2v(t2t8) f ~ t8!. ~2.5!

For a.1, Eq. ~2.4! leads to ux(t)u→` as x0
12ae2vt

1q(t)→0. If the noisef (t) has an infinite range of values
then the random functionq(t) has the same range. In th
case, the probability that the equationx0

12ae2vt1q(t)50
has at least one solution on any interval (0,t) is nonzero.
This implies that the state of the systemx(t) reaches infinity
on any finite time interval with nonzero probability. Furthe
for x0

12ae2vt1q(t)510 and x0
12ae2vt1q(t)520, i.e.,

for an infinitesimally small change of time, Eq.~2.4! yields
x(t)51` andx(t)52`, respectively. To exclude this un
physical behavior, we will only consider the casea,1.

If a51, then the integral on the left-hand side of Eq.~2.2!
goes to2` as y(t)→0 and to 1` as y(t)→1`, i.e.,
y(t)>0 for all times. In this case the solution of Eq.~2.2!
has the formy(t)5x0 expw(t), where

w~ t !5E
0

t

dt8 f ~ t8!, ~2.6!

and

x~ t !5x0 exp@2kt1w~ t !#. ~2.7!

Note that fora51, Eqs.~1.2! and ~1.1! are equivalent.

III. BIVARIATE AND UNIVARIATE PDF

We have obtained an explicit expression forx(t) in terms
of a functional off (t), namely,w(t) for a51 andq(t) for
a,1, respectively. These functionals represent the cum
tive effect of the random driving force from the initial insta
up to timet. For a51, w(t) is simply the integral overf (t),
whereas fora,1, the past influence of the driving force
weighted by an exponential kernel. The time-depend
univariate and bivariate PDF of the multiplicative noise sy
tem ~1.1! can now be determined if the bivariate PDF of t
force functionalsq(t) and w(t), respectively, can be ob
tained. This is certainly the case for Gaussian noise as
plained below.
5-2
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A. Bivariate PDF

Let Px(x,t;x1 ,t1) and Pq(q,t;q1 ,t1) be the bivariate
PDFs thatx(t)5x and x(t1)5x1, and q(t)5q and q(t1)
5q1, respectively. According to Eq.~2.4! the relation

q~ t !5x~ t !ux~ t !u2a2x0
12ae2vt, ~3.1!

holds, and a one-to-one correspondence exists betweenx(t)
and q(t). This implies that Px(x,t;x1 ,t1)udx dx1u
5Pq(q,t;q1 ,t1)udq dq1u, and

Px~x,t;x1 ,t1!5Pq~q,t;q1 ,t1!U]~q,q1!

]~x,x1!
U, ~3.2!

where

U]~q,q1!

]~x,x1!
U5~12a!2

uxx1ua
, ~3.3!

is the Jacobian. If the bivariate PDFPq(q,t;q1 ,t1) is known,
then the bivariate PDFPx(x,t;x1 ,t1) for a,1 is given by

Px~x,t;x1 ,t1!5
~12a!2

uxx1ua
Pq~xuxu2a2x0

12ae2vt,t;x1ux1u2a

2x0
12ae2vt1,t1!. ~3.4!

Using the relation

w~ t !5 ln
x~ t !

x0
1kt, ~3.5!

which follows from Eq.~2.7!, we obtain in the same way fo
a51,

Px~x,t;x1 ,t1!5
1

x x1
PwS ln

x

x0
1kt,t; ln

x1

x0
1kt1 ,t1D ,

~3.6!

(x,x1>0), wherePw(w,t;w1 ,t1) is the bivariate PDF tha
w(t)5w andw(t1)5w1.

The bivariate PDFs ofq(t) andw(t) are easily obtained
for the case of a Gaussian random force. Since these f
tionals depend linearly onf (t), see Eqs.~2.5! and~2.6!, they
are themselves Gaussian processes. As is well know
Gaussian process is fully defined by its mean value and
correlation function. In our casêf (t)&50, and therefore
^q(t)&50 and^w(t)&50, where^& denotes averaging with
respect to the noisef (t). To fully determine the above bi
variate PDFs, we need to express the correlation function
q(t), ^q(t)q(t8)&[Rq(t,t8), and of w(t), ^w(t)w(t8)&
[Rw(t,t8), in terms of the correlation function̂f (t) f (t8)&
[R(ut2t8u) of the stationary Gaussian noisef (t). From
Eqs.~2.5! and ~2.6! we obtain

Rq~ t,t8!5~12a!2e2v(t1t8)E
0

t

dtE
0

t8
dt8ev(t1t8)

3R~ ut2t8u!, ~3.7!
03110
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Rw~ t,t8!5E
0

t

dtE
0

t8
dt8R~ ut2t8u!. ~3.8!

Introducing the new variablesu5t2t8, v5t1t8 and de-
fining

Fv~z!5
1

vE0

z

duR~u!sinh@v~z2u!#, ~3.9!

we can reduce Eqs.~3.7! and ~3.8! after some algebra to

Rq~ t,t8!5~12a!2@e2vt8Fv~ t !1e2vtFv~ t8!2Fv~ t2t8!#,

~3.10!

and

Rw~ t,t8!5F0~ t !1F0~ t8!2F0~ t2t8!, ~3.11!

where F0(t)5 limv→0 Fv(t). Note that Fv(2z)5Fv(z),
sinceR(2u)5R(u). Further, we have that

e2vtFv~ t !5
1

2 K S E
0

t

dte2v(t2t) f ~t! D 2L , ~3.12!

which implies thatFv(t)>0 andFv(t)50 only for t50.
Using the well-known expression for the bivariate PDF

a Gaussian process@28#, we obtain from Eqs.~3.4! and~3.6!

Px~x,t;x1 ,t1!5
~12a!2uxx1u2a

2psq~ t !sq~ t1!A12r q
2~ t,t1!

3expH 2
1

2@12r q
2~ t,t1!#

3F 1

sq
2~ t !

S x

uxua
2x0

12ae2vtD 2

1
1

sq
2~ t1!

S x1

ux1ua
2x0

12ae2vt1D 2

2
2r q~ t,t1!

sq~ t !sq~ t1! S x

uxua
2x0

12ae2vtD
3S x1

ux1ua
2x0

12ae2vt1D G J , ~3.13!

for a,1, and
5-3
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Px~x,t;x1 ,t1!5
~xx1!21

2psw~ t !sw~ t1!A12r w
2 ~ t,t1!

3expH 2
1

2@12r w
2 ~ t,t1!#

3F 1

sw
2 ~ t !

S ln
x

x0
1kt D 2

1
1

sw
2 ~ t1!

3S ln
x1

x0
1kt1D 2

2
2r w~ t,t1!

sw~ t !sw~ t1!

3S ln
x

x0
1kt D S ln

x1

x0
1kt1D G J , ~3.14!

for a51. Here

sq
2~ t ![Rq~ t,t !52~12a!2

e2vt

v E
0

t

duR~u!sinh@v~ t2u!#,

~3.15!

is the dispersion ofq(t),

sw
2 ~ t ![Rw~ t,t !52E

0

t

duR~u!~ t2u!, ~3.16!

is the dispersion ofw(t), and

r q,w~ t,t1!5
Rq,w~ t,t1!

sq,w~ t !sq,w~ t1!
, ~3.17!

are the coefficients of correlation, which satisfy the condit
ur q,w(t,t1)u<1 @29#.

B. Univariate PDF

To obtain the univariate PDFPx(x,t) we can proceed in
the same way as for the bivariate PDF, or we can sim
eliminate one variable by integration,

Px~x,t !5E
2`

`

dx1Px~x,t;x1 ,t1!. ~3.18!

Substituting expression~3.4! into Eq.~3.18!, using the trans-
formation of variablesy5x1ux1u2a, and taking into accoun
that integration ofPq(q,t;q1 ,t1) over q1 yields the univari-
ate PDFPq(q,t), we find fora,1,

Px~x,t !5
12a

uxua
PqS x

uxua
2x0

12ae2vt,t D . ~3.19!

In the same way we find fora51,

Px~x,t !5
1

x
PwS ln

x

x0
1kt,t D . ~3.20!

If f (t) is a Gaussian noise, Eqs.~3.19! and ~3.20! yield
03110
n
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Px~x,t !5
12a

A2psq~ t !uxua

3expH 2
1

2sq
2~ t !

S x

uxua
2x0

12ae2vtD 2J ,

~3.21!

for a,1, and

Px~x,t !5
1

A2psw~ t !x
expH 2

1

2sw
2 ~ t !

S ln
x

x0
1kt D 2J

~3.22!

for a51. Expressions~3.14! and~3.22! are the bivariate and
univariate PDFs of the logarithmic-normal~lognormal! dis-
tribution @26#. By analogy, we call the probability distribu
tion, whose bivariate and univariate PDFs are given by E
~3.13! and ~3.21!, the power-normal distribution.

It is not difficult to verify that the univariate PDFs~3.21!
and ~3.22! satisfy the Fokker-Planck equation

]

]t
Px~x,t !5

]

]x
@kx2Dv~ t !axuxu2(a21)#Px~x,t !

1Dv~ t !
]2

]x2
uxu2aPx~x,t !, ~3.23!

where the function

Dv~ t !5E
0

t

duR~u!e2vu5H sq~ t !ṡq~ t !1vsq
2~ t !

~12a!2
, a,1,

sw~ t !ṡw~ t !, a51,
~3.24!

is the exponentially weighted time-dependent intensity
f (t). Specifically, if f (t) is Gaussian white noise, the
R(u)52Dd(u) @D is the white noise intensity,d(u) is thed
function# and Eq.~3.24! yields Dv(t)5D. In that case,x(t)
is a Markovian diffusion process, and Eq.~3.23! corresponds
to the Stratonovich interpretation@30# of Eq. ~1.1!. We em-
phasize that for colored noisef (t) the random processx(t) is
not Markovian, in spite of the fact thatPx(x,t) obeys a
Fokker-Planck equation.~For a Markovian process, it is th
transition probability density, and not only the univaria
PDF, that obeys a Fokker-Planck equation.! We will exploit
the fact that the univariate PDF~3.21! obeys a Fokker-Planck
equation in another paper@27# to obtain the statistical prop
erties ofx(t) with an absorbing boundary atx50.

IV. FRACTIONAL MOMENTS

In the previous section, we have achieved the main g
of this work, namely, to express the statistical properties
the state variablex(t) in terms of the statistical characteris
tics of the driving forcef (t) for the case of colored Gaussia
noise. Though Eqs.~3.13!, ~3.14!, ~3.21!, and~3.22! provide
explicit expressions for the bivariate and univariate PDFs
5-4



o
n
e
n

o

f
-

at

q.

-

the
he
l-

the

ng

-

d
-

STATISTICAL PROPERTIES OF A CLASS OF . . . PHYSICAL REVIEW E 65 031105
is helpful for our understanding of colored noise systems
type ~1.1! to consider also a more concise description a
determine numerical characteristics of the random proc
x(t). Moments are of particular interest for applications, a
we begin our analysis of the temporal evolution of Eq.~1.1!
by calculating the time-dependent fractional moments
x(t). They are defined as follows:

mr
n~ t !5E

2`

`

dxPx~x,t !uxur 2nxn, ~4.1!

wherer is a real number, andn50 or 1. In the case of the
power-normal distribution, the fractional momentsmr

1(t)
characterize its asymmetry, and alwaysmr

0(t)>mr
1(t). For

the lognormal distributionPx(x,t)[0 if x,0, and mr
0(t)

5mr
1(t)[mr(t). Fractional moments withr .0 are a useful

tool to characterize the behavior ofPx(x,t) as uxu→`, and
those withr ,0 provide information about the behavior o
Px(x,t) in the vicinity of x50. The convergence or diver
gence ofmr

n(t) for a particular realr allows us to draw
conclusions about the functional behavior of the univari
PDF asuxu→` andx→0, respectively.

First we calculate the fractional moments fora,1, i.e.,
for the case of the power-normal distribution. Writing E
~4.1! as

mr
n~ t !5E

0

`

dx@Px~x,t !1~21!nPx~2x,t !#xr , ~4.2!

and using Eq.~3.21!, we obtain

mr
n~ t !5

sq
j21~ t !

A2p
aj~ t !E

0

`

dvvj21@e2a2(t)(v21)2/2

1~21!ne2a2(t)(v11)2/2#, ~4.3!

where j511r /(12a), and a(t)5x0
12ae2vt/sq(t). Ac-

cording to Eq.~4.3!, all fractional moments diverge, ifj
<0, that is, if r<a21. For j.0, we use the integral rep
resentation of the Weber parabolic cylinder functions@31#

D2m~z!5
e2z2/4

G~m!
E

0

`

dyym21e2y2/22zy ~m.0!, ~4.4!

@G(m)5*0
`dyym21e2y is the gamma function#, and reduce

Eq. ~4.3! to

mr
n~ t !5

G~j!

A2p
e2a2(t)/4sq

j21~ t !$D2j@2a~ t !#

1~21!nD2j@a~ t !#%. ~4.5!

If j5n11 (n50,1, . . . ),then @32#

D2n21~z!5Ap

2

~21!n

n!
e2z2/4

dn

dzn S ez2/2 erfc
z

A2
D ,

~4.6!
03110
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where erfc (z)5(2/Ap)*z
`dt exp(2t2) is the complementary

error function. Specifically, forn50 we have

D21~z!5Ap

2
ez2/4 erfc

z

A2
, ~4.7!

and, since erfc (z)1erfc (2z)52, Eq. ~4.5! yields m0
0(t)

51, i.e.,Px(x,t) is properly normalized.
For the lognormal distribution, i.e., fora51, Eq. ~4.1!

yields

mr~ t !5
1

A2psw~ t !
E

0

`

dxxr 21 expF2
1

2sw
2 ~ t !

3S ln
x

x0
1kt D 2G . ~4.8!

To evaluate the integral, we introduce the new variabley
5 ln(x/x0)1kt, and find

mr~ t !5x0
r expS 1

2
r 2sw

2 ~ t !2rkt D , ~4.9!

which is valid for allr. In particular,m0(t)51, i.e.,Px(x,t)
is properly normalized.

Moments provide a concise means of characterizing
time evolution of a random process. To gain insight into t
motion of a particle in a quadratic potential driven by mu
tiplicative colored Gaussian noise, we evaluate
asymptotic behavior of the fractional moments fort→0 and
t→`.

A. Short-time behavior

First we determine the asymptotic behavior ofmr
n(t) and

mr(t) for t→0. We consider the case that the leadi
asymptotic term of the correlation function of the noiseR(u)
obeys a power law, i.e.,R(u);cau2b asu→0. Hereca is a
positive parameter, which has the dimension ofx0

2(12a)tb22,
and 0<b,1. @The inequalityb>0 follows from the condi-
tion R(0)>R(u), which is valid for arbitrary stationary pro
cessf (t), and the inequalityb,1 from the condition that the
integral in Eq.~3.15! converges at the lower limit.# In this
case, Eqs.~3.15! and ~3.16! yield

S sq
2~ t !

sw
2 ~ t !

D;S ca~12a!2

c1
D 2t22b

~12b!~22b!
, ~4.10!

ast→0. Sincea(t)→` if t→0, we use the Laplace metho
@33# to obtain the following asymptotic formulas for the in
tegrals in Eq.~4.3!:

E
0

`

dvvj21e2a2(t)(v21)2/2;
A2p

a~ t ! F11
~12j!~22j!

2a2~ t !
G ,

E
0

`

dvvj21e2a2(t)(v11)2/2;G~j!
e2a2(t)/2

a2j~ t !
, ~4.11!
5-5
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as a(t)→`. For k.0, Eqs.~4.3!, ~4.9!, and ~4.11! lead to
the same asymptotic formula formr

n(t) andmr(t),

S mr
n~ t !

mr~ t !
D;x0

r ~12rkt ! ~ t→0!, ~4.12!

and fork50, they yield

mr
n~ t !;x0

r S 11
r ~r 1a21!ca

~12b!~22b!x0
2(12a)

t22bD , ~4.13!

and

mr~ t !;x0
r S 11

r 2c1

~12b!~22b!
t22bD , ~4.14!

(t→0). Herer P(a21,̀ ) and r P(2`,`) if a,1 anda
51, respectively. Note that the fractional momentsmr

n(t) do
not depend onn, since fort→0 the support of the univariat
PDF Px(x,t) is a small vicinity of the pointx5x0.

Our results show the expected behavior. Fork.0, frac-
tional moments with positiver decrease and those with neg
tive r increase with time. This behavior indicates that t
short-time evolution of the particle is dominated by the s
tematic force that drives the particle towards the origin. Fo
flat potential,k50, i.e., a free particle, the short-time motio
is of course driven by the random force. The broadening
the PDF due to the multiplicative noise is reflected by
fact that the moments that probe the behavior near zero,
r ,0, as well as those that probe the behavior for largeuxu,
i.e., r .0, increase with time.

B. Long-time behavior

To address the long-time behavior of the particle,t→`,
we need to consider four cases separately, namely,a,1 and
k.0, a,1 and k50, a51 and k.0, and a51 and k
50.

1. aË1, kÌ0

In this casea(`)50, and Eq.~3.15! yields

sq
2~`!5~12a!2

1

vE0

`

duR~u!e2vu. ~4.15!

@SinceR(u)→0 asu→`, sq
2(`),`.# Using the formula

D2j~0!52j/221
G~j/2!

G~j!
, ~4.16!

which follows from Eq.~4.4!, we obtain

mr
n~`!5

G~j/2!

A2p
2j/2sq

j21~`!
11~21!n

2
, ~4.17!

(j.0). In this case all fractional moments withr .a21
have a finite value, and according to Eq.~3.21! the stationary
PDF Pst(x)5Px(x,`) has the form
03110
-
a

f
e
e.,

Pst~x!5
12a

A2psq~`!uxua
expS 2

uxu2(12a)

2sq
2~`!

D . ~4.18!

Note thatPst(x) is even, as is also reflected bymr
1(`)50.

As expected, our results show that the interplay betw
the systematic restoring force and the random driving fo
achieves a balance in the long term and results in a statio
PDF.

2. aË1, kÄ0

This is the case of a constant potential, i.e., the case
free particle. As mentioned in the Introduction, free partic
described by Langevin equations with additive colored no
can display anomalous diffusion. Here we investigate
effect of multiplicative colored noise on the diffusive beha
ior of free particles. Fora,1 andk50, Eq. ~3.15! is re-
duced to

sq
2~ t !52~12a!2E

0

t

duR~u!~ t2u!. ~4.19!

According to Ref.@23#, if

Ḟ0~ t !5E
0

t

duR~u!5o~1/t ! ~ t→`!, ~4.20!

then sq
2(`),`, and if 0,R<`, whereR5*0

`duR(u) is
the noise intensity, or ifR50, but Eq.~4.20! does not hold,
thensq

2(`)5`. This implies that all fractional moments ar
finite if Eq. ~4.20! is fulfilled,

mr
n~`!5

G~j!

A2p
e2a2(`)/4sq

j21~`!$D2j@2a~`!#

1~21!nD2j@a~`!#%, ~4.21!

with a(`)5x0
12a/sq(`), and the stationary PDF is given b

Pst~x!5
12a

A2psq~`!uxua
expS 2

~xuxu2a2x0
12a!2

2sq
2~`!

D .

~4.22!

In contrast to the previous case,Pst(x) is not even. Indeed
Eq. ~4.22! shows thatPst(2x)5” Pst(x).

These results show that a free particle driven by multip
cative colored Gaussian noise obeying Eq.~4.20!, i.e., noise
whose intensityR vanishes, does not display the expect
diffusive behavior. The random driving force hasR50, if
contributions from regions of positive and negative corre
tions in the noisef (t) cancel each other out. This counte
balance of positive correlations by negative ones leads
stochastic localization of free particles, a phenomenon fi
described for free particles driven by additive colored no
@23#.

If Eq. ~4.20! is not fulfilled, the stationary PDF does no
exist. In this case, free particles display diffusive behav
that can be characterized by the fractional moments.
asymptotic behavior of the fractional moments is determin
5-6
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by the asymptotic behavior ofsq
2(t) as t→`. Using Eqs.

~4.5! and ~4.16!, we find formr
0(t),

mr
0~ t !;

G~j/2!

A2p
2j/2sq

j21~ t ! ~ t→`!, ~4.23!

and using the asymptotic formula

D2j~2z!2D2j~z!;
2(j11)/2

G~j!
GS j11

2 D z, ~4.24!

(z→0), which follows from Eq.~4.4!, we obtain formr
1(t),

mr
1~ t !;

x0
12a

Ap
GS j11

2 D2j/2sq
j22~ t ! ~ t→`!. ~4.25!

If 0 ,R,`, thensq
2(t)}t as t→` @23#, and Eqs.~4.23!

and~4.25! yield mr
0(t)}t (j21)/2 andmr

1(t)}tj/221. These re-
lations show thatmr

n(`)50 for r P„a21,n(12a)…, and
mr

n(`)5` for r P„n(12a),`…. Note that the dispersion o
the particle position,sx

2(t)5^x2(t)&2^x(t)&2, can be repre-
sented as sx

2(t)5m2
0(t)2@m1

1(t)#2. So, sx
2(t);m2

0(t)
}t1/(12a) as t→`, and the conditionsa50, a,0, and 0
,a,1 correspond to normal diffusion, subdiffusion~diffu-
sion slower than the normal!, and superdiffusion~diffusion
faster than the normal!, respectively. In other words, in thi
case the state dependence of the noise~when a5” 0) gives
rise to anomalous diffusive behavior.

For R5`, the function sq
2(t) grows faster thant but

slower thant2 as t→` @23#. If R(u)}u2g (0,g,1) asu
→`, then sq

2(t)}t22g, and Eqs.~4.23! and ~4.25! yield
mr

0(t)}t (j21)(12g/2) and mr
1(t)}t (j22)(12g/2). Specifically,

the long-time asymptotic behavior of the dispersion of
particle position has the formsx

2(t)}t (22g)/(12a). This result
implies that normal diffusion, subdiffusion, and superdiff
sion occur fora5g21, a,g21, and g21,a,1, re-
spectively. Note that there is a remarkable interrelation
tweenuxua-type multiplicative noises with finite and infinit
intensities. Namely, multiplicative noise with infinite inten
sity (R5`) and characterized by the exponentsa5a8 and
g leads to the same long-time asymptotic behavior ofmr

0(t)
@and sx

2(t)# as multiplicative noise with finite intensity (0
,R,`) and characterized by the exponenta5(11a8
2g)/(22g). In particular, the action of additive noise wit
R5` is similar to the action of multiplicative noise with 0
,R,` anda5(12g)/(22g).

3. aÄ1, kÌ0

If R50, then the condition limt→` sw
2 (t)/t50 holds, and

according to Eq.~4.9! all fractional momentsmr(t) with r
.0 tend to zero and all fractional moments withr ,0 di-
verge ast→`. Thus if the noise intensityR vanishes and if
a51, the systematic force dominates the random force
drives the particle to the steady state, the minimum of
potential,x50. The PDF approaches the Dirac delta fun
tion d(x) as t goes to infinity.~The time evolution of the
PDF is studied in more detail in the next section.! Note that
03110
e

-

d
e
-

this behavior is qualitatively different from the case ofa
,1. In that case, the amplitude of the fluctuations does
go to zero linearly asx→0, and as discussed above, neith
the systematic force nor the random force dominates in
long term; their effects balance and result in a station
PDF.

If R5” 0, then the long-time behavior is more complicat
and no well-defined stationary PDF exists. This aspect w
be addressed in more detail in the next section. As far as
fractional moments are concerned, we obtain the follow
results.

If 0 ,R,`, then, writing the leading asymptotic term o
sw

2 (t) as 2gt, we obtain

mr~ t !;x0
r exp@r ~rg2k!t# ~ t→`!. ~4.26!

Thus mr(`)5` if r ,0 or r .k/g, andmr(`)50 if 0,r
,k/g. For r 5k/g, the valuemr(`) is determined by the
second term of the asymptotic expansion ofsw

2 (t). Finally,
for R5` the condition limt→` sw

2 (t)/t5` holds, and all
fractional moments withr 5” 0 diverge ast→`.

4. aÄ1, kÄ0

For the case of free particles, stochastic localization
curs again if Eq.~4.20! holds, since then we havemr(`)
5x0

r exp@r2sw
2(`)/2#,`. According to Eq.~3.22! the station-

ary PDF exists in this case and has the form

Pst~x!5
1

A2psw~`!x
expS 2

ln2~x/x0!

2sw
2 ~`!

D . ~4.27!

Otherwise,sw
2 (`)5`, and all fractional momentsmr(t)

5x0
r exp@r2sw

2(t)/2# with r 5” 0 diverge ast→`.

V. TIME EVOLUTION OF THE UNIVARIATE PDF

Having gained a first understanding of the temporal e
lution of Eq. ~1.1! by studying numerical characteristics o
the PDF, namely, the fractional moments, we now investig
directly how the univariate PDF evolves with time. Accor
ing to Eqs.~3.21!, ~3.22!, and ~4.10! the initial univariate
PDF has the formPx(x,0)5d(x2x0), which agrees with the
initial conditionx(0)5x0 for Eq. ~1.2!. The temporal evolu-
tion of Px(x,t) depends ona, i.e., on the state dependence
the multiplicative noise and in particular on the strength
the random force nearx50. We first study the case 0,a
,1. As discussed in the Introduction, the solution of E
~1.1! is not unique atx50. We consider here the solution fo
which x50 is a regular point. Nevertheless, both the syste
atic restoring force and the random driving force vanish
x50. We, therefore, expect probability to accumulate in t
neighborhood of this point. This is indeed the case. Equa
~3.21! shows that fort.0 the PDFPx(x,t) has an absolute
maximum Px(0,t)5` at x50; Px(x,t);uxu2a as uxu→0.
The location of other extrema are given by the equat
]Px(x,t)/]x50, which can be written in the form
5-7
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uxu2(12a)2xuxu2ax0
12ae2vt1

a

12a
sq

2~ t !50. ~5.1!

This equation has solutions of the form

x6~ t !5x0e2ktF1

2
6A1

4
2

a

12a

1

a2~ t !
G 1/~12a!

, ~5.2!

only if a2(t)>4a/(12a). For nondecreasing function
sq

2(t), the conditiona2(t)>4a/(12a) holds if 0<t<t0,
wheret0 is the solution of the equationa2(t)54a/(12a).
For k.0 this equation always has a solution, and fork50 a
solution exists if sq

2(`)>x0
2(12a)(12a)/4a. @If sq

2(`)
,x0

2(12a)(12a)/4a, then Eq.~5.2! is valid for all t.# At x
5x1(t) and x5x2(t), the PDFPx(x,t) has a local maxi-
mum and a local minimum, respectively. The former,x1(t),
decreases monotonically with time, and the latter,x2(t), in-
creases monotonically with time, ift,t0. Specifically, in the
short-time limit Eq.~5.2! yields

x1~ t !;x0~12kt ! ~ t→0!, ~5.3!

for k.0,

x1~ t !;x0S 12
a

~12a!2

sq
2~ t !

x0
2(12a)D ~ t→0!, ~5.4!

for k50, and

x2~ t !;
1

x0
S a

12a
sq

2~ t ! D 1/~12a!

~ t→0!, ~5.5!

for k>0, wheresq
2(t) is given by Eq.~4.10!. At t5t0, the

local maximum and the local minimum coalesce, and fot
.t0 the univariate PDF has a single~infinite! maximum at
x50. If the equationa2(t)54a/(12a) has no solution, i.e.
if t0 does not exist, then the two local extrema ofPx(x,t)
exist for all times. The stronger the random driving for
near zero relative to the systematic restoring force, i.e.,
smaller a with 0,a,1, the longer the bimodality of the
PDF lasts in time. Only for free particles,k50, i.e., only if
the systematic restoring forces vanishes, can the bimod
persist forever. A necessary condition is the vanishing of
noise intensity,R50, see Eq.~4.20!.

To gain more insight into the behavior ofPx(x,t) in the
vicinity of x50, we define the probability

We~ t !5E
2e

e

dxPx~x,t !, ~5.6!

that x(t)P(2e,e). For the power-normal univariate PD
~3.21!, Eq. ~5.6! leads to the formula

We~ t !5
1

2
erfS a~ t !

A2
1

e12a

A2sq~ t !
D

2
1

2
erfS a~ t !

A2
2

e12a

A2sq~ t !
D , ~5.7!
03110
e

ity
e

which is valid for a,1. Here erf(z)512erfc(z)
5(2/Ap)*0

zdt exp(2t2) is the error function. According to
Eq. ~5.7!, we have We(0)50 if e,x0 , We(0)51 if e
.x0 , We(`)5erf„e12a/A2sq(`)… if k.0, We(`)50 if
k50 andsq(`)5`, andWe(t)→0 ase→0. Specifically,
the last condition shows that thoughPx(0,t)5`, x50 is
indeed not an absorbing point.

To summarize, for 0,a,1 the PDFPx(x,t) evolves as
follows. If k.0 and 0,t,t0, thenPx(x,t) is bimodal~see
Fig. 1, curve a!. With time,x1(t) andPx„x1(t),t… decrease,
x2(t) and Px„x2(t),t… increase, and att5t0 the local ex-
trema coalesce. Fort.t0, the PDFPx(x,t) is unimodal~see
Fig. 1, curve b!, and in the large-time limit it approaches th
stationary distribution~4.18!. If k50, then the temporal be
havior of Px(x,t) depends on the value ofsq(`). For
sq

2(`),x0
2(12a)(12a)/4a and t.0, the univariate PDF is

bimodal as shown in Fig. 1~curve a!, andPst(x) is given by
Eq. ~4.22!. For x0

2(12a)(12a)/4a<sq
2(`),` and t,t0,

the PDFPx(x,t) is bimodal as shown in Fig. 1~curve a!,
whereas fort>t0 it is unimodal as shown in Fig. 1~curve b!,
and Pst(x) is given again by Eq.~4.22!. Finally, for sq(`)
5` the PDFPx(x,t) is bimodal fort,t0 and unimodal for
t>t0, but the stationary PDF does not exist andWe(`)50
for any e.

We now consider the case wherea,0, i.e., the amplitude
of the multiplicative noise diverges as the particle a
proaches the minimum of the potential well. This is a use
model for exploring situations where the fluctuations dri
the system out of the deterministic steady state, whereas
systematic force pushes the system towards it. Accordin
Eq. ~3.21!, the univariate PDFPx(x,t) has an absolute mini
mum Px(0,t)50 at x50, Px(x,t);uxu uau as uxu→0, and
Eq. ~5.1! has the solutions

x6~ t !56x0e2ktF6
1

2
1A1

4
2

a

12a

1

a2~ t !
G 1/~12a!

.

~5.8!

At x5x1(t), the PDFPx(x,t) has an absolute maximum
Px„x

1(t),t…, and at x5x2(t), it has a local maximum,
Px„x

2(t),t…; Px„x
1(t),t….Px„x

2(t),t… for t5” `. Using Eq.
~5.8!, we obtainx1(t);x1(t)(t→0) for k.0,

FIG. 1. Plot of the PDFPx(x,t) versus x for a50.1, k
50.1, x050.01. The correlation functionR(u) has the exponentia
form R(u)5R(0)exp(2u/tc) with parametersR(0)50.01 andtc

51. The curves a and b correspond tot50.2 andt50.4, respec-
tively.
5-8
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x1~ t !;x0S 11
uau

~12a!2

sq
2~ t !

x0
2(12a)D ~ t→0!, ~5.9!

for k50, and

x2~ t !;2
1

x0
S uau
12a

sq
2~ t ! D 1/~12a!

~ t→0!, ~5.10!

for k>0, wheresq
2(t) is given by Eq.~4.10!. In the long-

time limit Eq. ~5.8! yields

x1~`!5ux2~`!u5S uau
12a

sq
2~`! D 1/2(12a)

, ~5.11!

for k.0, wheresq
2(`) is defined by Eq.~4.15!, and

x1~ t !;ux2~ t !u;S uau
12a

sq
2~ t ! D 1/2(12a)

~ t→`!,

~5.12!

for k50 and sq(`)5`, where sq
2(t) is defined by Eq.

~4.19!. If k50 and sq(`),`, Eq. ~5.8! yields ux6(`)u
,` and x1(`).ux2(`)u. If k.0 or k50 and Eq.~4.20!
holds, thenPx(x,t) approaches the stationary PDF~4.18! or
~4.22!, respectively, in the long-time limit. Ifk50 and Eq.
~4.20! does not hold, thenux6(t)u→` as t→`, the station-
ary PDF does not exist, andWe(`)50 for all e.

In summary, for multiplicative colored Gaussian noi
whose amplitude diverges asx→0, the random driving force
dominates nearx50. It drives the particle away from thi
point, and the probability density vanishes there. The no
acts symmetrically with respect tox50, which results in
temporal bimodality. Fork.0, the bimodal behavior of the
PDF is stabilized in the long-time limit by the opposing e
fect of the systematic force, and the system evolves towa
a stationary PDF. If the systematic force vanishes,k50, and
the noise intensity of the random force also vanishes,R50,
i.e., stochastic localization of free particles occurs, then
bimodal behavior is stabilized by the balance between
gions of positive and negative correlations of the noisef (t).
Again, the system evolves towards a stationary PDF. Ik
50 and the noise intensity is nonzero, then the most pr
able location of free particles goes to plus or minus infin
as t→`, and a stationary PDF does not exist.

To illustrate the behavior of the PDF as a function ofx,
we plot Px(x,t) versusx for different values ofa and t in
Figs. 2 and 3. The correlation function of the Gaussian no
is again exponential as in Fig. 1. In this caseR5R(0)tc , and
the PDFPx(x,t) approaches the stationary PDF~4.18! as t
→`.

For the case of additive noise,a50, the univariate PDF is
Gaussian according to Eq.~3.21!. As before, in this case th
function Px(x,t) evolves with time to the stationary PD
~4.18! if k.0, and to the stationary PDF~4.22! if k50 and
Ḟ0(t)5o(1/t) as t→`. Otherwise the stationary PDF doe
not exist.

Finally, we consider the casea51, where the behavior o
the PDF nearx50 is quite irregular as we will show. Ac
03110
e

ds

e
-

b-

e

cording to Eq.~3.22!, Px(0,t)5Px(`,t)50, andPx(x,t) is
unimodal for all times. The maximum is located atx
5xm(t),

xm~ t !5x0 exp@2sw
2 ~ t !2kt#, ~5.13!

and

Px„xm~ t !,t…5
1

A2p sw~ t !x0

exp@sw
2 ~ t !/21kt#.

~5.14!

If k50 andsw(`),`, thenxm(`)5” 0, Px„xm(`),`…,`,
all fractional moments~4.9! are finite att5`, and Px(x,t)
approaches the stationary PDF~4.27! as t→`. In all other
cases we havexm(t)→0 and Px„xm(t),t…→` as t→`.
Since Px(0,t)50, the long-time behavior ofPx(x,t) in a
small vicinity of x50 is extremely irregular in those case
To characterizePx(x,t) near zero, we write the probability
We(t), using Eqs.~5.6! and ~3.22!, as

We~ t !5
1

2
erfcS 2

ln~e/x0!1kt

A2sw~ t !
D . ~5.15!

We define

c5 lim
t→`

ln~e/x0!1kt

A2sw~ t !
, ~5.16!

and taking into account thatsw
2 (t) grows slower thant2, we

obtain c5` if k.0, andc50 if k50 and R5” 0. Since
erfc (2c)52 in the first case, and erfc (2c)51 in the sec-
ond case, Eq.~5.15! yields We(`)51 andWe(`)51/2, re-

FIG. 2. Plot of the PDFPx(x,t) versusx for a520.5, k
50.1, x051, R(0)51, tc51, andt51 ~curve a!, t55 ~curve b!.

FIG. 3. Plot of the PDFPx(x,t) versusx for a522, k50.1,
x051, R(0)51, tc51, andt50.5 ~curve a!, t52 ~curve b!.
5-9
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spectively. Though we havexm(`)50, Px„xm(`),`…5`,
and We(`)51 for k.0, the limit limt→` Px(x,t)5d(x)
holds only for R50, when all fractional momentsmr(`)
with r .0 equal zero. IfR5” 0, i.e, if regions of positive
correlations in the noise dominate, then the long-time beh
ior of the PDF is determined by the linear random drivi
force, no matter if a linear systematic restoring force exi
k.0, or not,k50. The system will not approach a wel
defined stationary PDF ast→`. In other words, a linear
systematic restoring force cannot balance the effects of lin
multiplicative colored Gaussian noise, ifR5” 0. The ampli-
tude of the noise must grow slower thanuxu as uxu→`, if a
stationary PDF is to exist for systems of type~1.1!.

VI. COEFFICIENT OF CORRELATION

In the previous two sections we have characterized
temporal behavior of the Langevin equation~1.1! by study-
ing the single-time PDF and its fractional moments. To o
tain further insight into the effects of colored multiplicativ
Gaussian noise, we now turn our attention to a two-ti
quantity, the coefficient of correlation, in this section, and
pathwise quantity, the fractal dimension, in the next secti
We define the coefficient of correlation of the random p
cessx(t) as usual by

r x~ t,t1!5
Rx~ t,t1!

sx~ t !sx~ t1!
, ~6.1!

where

Rx~ t,t1!5^x~ t !x~ t1!&2^x~ t !&^x~ t1!&, ~6.2!

is the correlation function, andsx
2(t)5Rx(t,t) is the disper-

sion ofx(t). Our focus here is the dependence of the limiti
value r x(t,`) on the noise correlation functionR(u). First
we consider the case of the power-normal distributiona
,1). Using Eqs.~3.13! and ~3.21! and a transformation o
variables, we obtain

Rx~ t,t1!5
@sq~ t !sq~ t1!#1/~12a!

2p E
2`

` E
2`

`

dxdye2(x21y2)/2

3@x1a~ t !#ux1a~ t !ua/~12a!

3$@A12r q
2~ t,t1! y1a~ t1!

1r q~ t,t1! x#uA12r q
2~ t,t1! y1a~ t1!

1r q~ t,t1!xua/~12a!

2@y1a~ t1!#uy1a~ t1!ua/~12a!%. ~6.3!

Though the integral overy can be expressed by means of t
Weber parabolic cylinder functions, we will use Eq.~6.3!,
which is more suitable for our purposes.

According to Eqs.~3.10! and ~3.17!, the coefficient of
correlationr q(t,t1) is given by
03110
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r q~ t,t1!5
e2vt1Fv~ t !1e2vtFv~ t1!2Fv~ t12t !

2@e2v(t1t1)Fv~ t !Fv~ t1!#1/2
.

~6.4!

If R(u);cau2b @0<b,1, ca5R(0) for b50] as u
→0, then forv.0,

Fv~ t !;
ca

~12b!~22b!
t22b ~ t→0!, ~6.5!

which after some algebra leads to the expected result
Rx(t,`)50 andr x(t,`)50, i.e.,x(t) andx(`) are not cor-
related for an arbitrary correlation functionR(u) andk.0.

For free particles,k50, i.e.,v50, stochastic localization
can occur, and we expect the correlation betweenx(t) and
x(t1) to persist fort1→`. For k50, Eq.~6.4! is reduced to

r q~ t,t1!5
F0~ t !1F0~ t1!2F0~ t12t !

2@F0~ t !F0~ t1!#1/2
, ~6.6!

where according to Eq.~3.9! F0(z) is defined as

F0~z!5E
0

z

duR~u!~z2u!. ~6.7!

We use the relation

F0~ t1!2F0~ t12t !5E
t12t

t1
duR~u!~ t12u!1tE

0

t12t

duR~u!,

~6.8!

which follows from Eq.~6.7!, the formula

E
t12t

t1
duR~u!~ t12u!→0 ~ t1→`!, ~6.9!

and the limit

lim
t1→`

Ḟ0~ t1!/AF0~ t1!50, ~6.10!

which for 0,R<` follows from the conditionsF0(t1)
;t1Ḟ0 (t1)(t1→`) and limt1→` Ḟ0(t1)/t150, and for R

50 from Ḟ0(`)5R andF0(`).0, to obtain for finitet,

r q~ t,`!5
1

2
AF0~ t !/F0~`!. ~6.11!

According to this formula,r q(t,`)50 if t50 or F0(`)
5`. The last condition holds if 0,R<` and also forR
50 if Eq. ~4.20! does not hold. In contrast, if the conditio
~4.20! holds, i.e., stochastic localization ofx(t) occurs, then
F0(`),`,r q(t,`)5” 0 and sor x(t,`)5” 0 for t.0. This re-
sult shows that correlations betweenx(t) andx(t1t1) exist
indeed even fort1→` in the case of stochastic localization

Next we consider the case of the lognormal distributi
(a51). For this case we write the correlation function
x(t) as
5-10
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Rx~ t,t1!5E
0

`E
0

`

dx dx1xx1Px~x,t;x1 ,t1!2m1~ t !m1~ t1!. ~6.12!

Using Eq.~3.14! and introducing the new variablesy andy1

x5x0ey2kt, x15x0ey12kt1, ~6.13!

we can reduce Eq.~6.12! to the form

Rx~ t,t1!5
x0

2e2k(t1t1)

2psw~ t !sw~ t1!A12r w
2 ~ t,t1!

3E
2`

` E
2`

`

dy dy1 expF y1y12
1

2@12r w
2 ~ t,t1!#

S y2

sw
2 ~ t !

1
y1

2

sw
2 ~ t1!

2
2r w~ t,t1!

sw~ t !sw~ t1!
yy1D G2m1~ t !m1~ t1!.

~6.14!
f

u

-

t

Performing the integration overy and y1 in Eq. ~6.14! and
using Eq.~4.9! and the relationsw

2 (t)52F0(t), we obtain
the explicit formulas for the correlation function

Rx~ t,t1!5m1~ t !m1~ t1!@eRw(t,t1)21#

5x0
2 exp@F0~ t !1F0~ t1!2k~ t11t !#

3$exp@F0~ t !1F0~ t1!2F0~ t12t !#21%,

~6.15!

and for the coefficient of correlation

r x~ t,t1!5
eRw(t,t1)21

@~eRw(t,t)21!~eRw(t1 ,t1)21!#1/2

5
exp@F0~ t !1F0~ t1!2F0~ t12t !#21

@~e2F0(t)21!~e2F0(t1)21!#1/2
.

~6.16!

Specifically, if t→0 andR(u);c1u2b (0<b,1) asu
→0, then Eqs. ~6.15! and ~6.16! yield Rx(t,t1)
;x0m1(t1)Ḟ0(t1)t and

r x~ t,t1!;A ~12b!~22b!

2c1~e2F0(t1)21!
Ḟ0~ t1!tb/2, ~6.17!

@c15R(0) for b50], i.e., Rx(0,t1)50 (t1.0) for all b,
whereasr x(0,t1)50 only for 0,b,1. According to Eqs.
~6.8!–~6.10!, if t15` then

r x~ t,`!5
eF0(t)21

@~e2F0(t)21!~e2F0(`)21!#1/2
, ~6.18!

if Eq. ~4.20! holds, andr x(t,`)50 otherwise. Therefore, i
stochastic localization ofx(t) occurs, thenr x(t,`)5” 0 (t
.0) for the power-normal as well as the lognormal distrib
tions.
03110
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VII. FRACTAL DIMENSION

The fractal dimensiondf of a random processx(t) char-
acterizes the irregularity ofx(t) and can be defined in vari
ous ways@7,14#. Here we use the definition@34#

df511 lim
t→0

ln^Lt&
ln~1/t!

, ~7.1!

where

^Lt&5(
i 51

N

^A~bt!21@x~ t i !2x~ t i 21!#2&, ~7.2!

is the average length ofx(t) on the interval (t,t1Dt), Nt
5Dt, t i5t i 211t, t05t, and b is a scaling parameter. In
other words,df characterizes the fractal properties ofx(t) on
the interval (t,t1Dt). If this interval is small enough, so tha
the bivariate PDF ofx(t) does not change, then Eq.~7.2! is
reduced to

^Lt&5
Dt

t
^A~bt!21@x~ t1t!2x~ t !#2&. ~7.3!

Using Eq.~3.13!, we can rewrite Eq.~7.3! for the power-
normal distribution in the form

^Lt&5
Dt

2pE2`

` E
2`

`

dxdyH b21
1

t2
$sq

1/~12a!~ t1t!

3@xrq~ t,t1t!1yA12r q
2~ t,t1t!1a~ t1t!#

3uxrq~ t,t1t!1yA12r q
2~ t,t1t!1a~ t1t!ua/~12a!

2sq
1/~12a!~ t !@x1a~ t !#ux1a~ t !ua/~12a!%2J 1/2

3e2(x21y2)/2. ~7.4!
5-11
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If R(u);cau2b (0<b,1) as u→0, then Eqs.~6.4! and
~6.5! for t→0 yield 12r q

2(t,t1t)}t22b, and Eq. ~7.4!
leads to^Lt&}t2b/2. As a consequence, we obtain from E
~7.1!

df511b/2. ~7.5!

This result shows that the random processes with a pow
normal distribution considered here have fractal proper
only if 0,b,1, i.e., only if the noise correlation functio
R(u) has a singularity atu50. Note also that for such pro
cesses the fractal dimensiondf does not depend ont.

In the case of the lognormal distribution, Eq.~7.3! can be
written as

^Lt&5
Dt

2pE2`

` E
2`

`

dxdyH b21
x0

2

t2
$exp@xsw~ t !2kt#

2exp@ysw~ t1t!A12r w
2 ~ t,t1t!2k~ t1t!

1xsw~ t1t!r w~ t,t1t!#%2J 1/2

e2(x21y2)/2. ~7.6!

Since 12r w
2 (t,t1t)}t22b for t→0, Eq. ~7.6! yields ^Lt&

}t2b/2, and the fractal dimension of random processes w
a lognormal distribution is given by the same formula~7.5!
as for the power-normal distribution.
J.
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VIII. CONCLUSIONS

We have studied the statistical properties of nonlinear s
tems driven by colored Gaussian noise whose amplitude
pends on a power of the system state,uxua. Starting from the
exact solutionx(t) of the Langevin equation, we have ob
tained the univariate and bivariate PDFs ofx(t) and shown
that, depending on the exponenta, the solution is described
by the lognormal~if a51) or the power-normal~if a,1)
distribution. We have found that in both cases the system
exhibit the phenomenon of stochastic localization, i.e., a
tionary univariate PDF for free particles exists, and we ha
derived the criterion when this occurs. We have studied
detail the time evolution of the univariate PDF, found exa
expressions for the fractional moments ofx(t), and obtained
and analyzed their short- and long-time asymptotics. Spe
cally, the long-time behavior of the dispersion of the partic
position shows that diffusion of free particles can ha
anomalous character, and we have determined the condi
that lead to subdiffusion and superdiffusion.

Using the bivariate PDF, we have obtained an integ
representation for the correlation functionRx(t,t1) and for
the coefficient of correlationr x(t,t1) of x(t) for a,1, and
for a51 we have expressedRx(t,t1) andr x(t,t1) in terms of
elementary functions. We have shown that if stochastic
calization occurs, thenx(t) andx(t1t1) are correlated even
as t1→`, i.e., in the case of stochastic localization the co
dition r x(t,`)5” 0 (t.0) holds, andr x(t,`)50 in all other
cases. Also, we have calculated the fractal dimensiondf of
x(t) and established thatx(t) is fractal, i.e.,df.1, if the
noise correlation functionR(u) has a power singularity a
u50.
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